Non-recurrent meromorphic functions
نویسندگان
چکیده
منابع مشابه
Non-real Zeros of Derivatives of Real Meromorphic Functions
The main result of the paper determines all real meromorphic functions f of finite order in the plane such that f ′ has finitely many zeros while f and f(k), for some k ≥ 2, have finitely many non-real zeros. MSC 2000: 30D20, 30D35.
متن کاملIteration of Meromorphic Functions
4. The Components of the Fatou set 4.1. The types of domains of normality 4.2. The classification of periodic components 4.3. The role of the singularities of the inverse function 4.4. The connectivity of the components of the Fatou set 4.5. Wandering domains 4.6. Classes of functions without wandering domains 4.7. Baker domains 4.8. Classes of functions without Baker domains 4.9. Completely in...
متن کاملAn Ahlfors Islands Theorem for Non-archimedean Meromorphic Functions
We present a p-adic and non-archimedean version of Ahlfors’ Five Islands Theorem for meromorphic functions, extending an earlier theorem of the author for holomorphic functions. In the non-archimedean setting, the theorem requires only four islands, with explicit constants. We present examples to show that the constants are sharp and that other hypotheses of the theorem cannot be removed.
متن کاملMeromorphic Functions and Factoriality
Let K be a compact subset of a connected Stein manifold X. We study algebraic properties of the ring of meromorphic functions on X without poles in K.
متن کاملUniqueness of Meromorphic Functions∗
In this paper, Hinkkanen’s problem (1984) is completely solved, i.e., it is shown that any meromorphic function f is determined by its zeros and poles and the zeros of f (j) for j = 1, 2, 3, 4. To appear in J. Canad. Math. / Canad. J. Math.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 2004
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm182-3-5